
12 March/April 2018 Copublished by the IEEE Computer and Reliability Societies 1540-7993/18/$33.00 © 2018 IEEE

HACKING WITHOUT HUMANS

Mechanical Phish: Resilient

Autonomous Hacking

Yan Shoshitaishvili | Arizona State University

Antonio Bianchi and Kevin Borgolte | University of California at Santa Barbara

Amat Cama | Independent Researcher

Jacopo Corbetta | Independent Researcher

Francesco Disperati | PayJunction

Audrey Dutcher | University of California at Santa Barbara

John Grosen | Massachusetts Institute of Technology

Paul Grosen, Aravind Machiry, and Chris Salls | University of California at Santa Barbara

Nick Stephens | Independent Researcher

Ruoyu Wang and Giovanni Vigna | University of California at Santa Barbara

Recently, the vulnerability analysis process has started to shift from human analysts to automated
approaches. The DARPA Cyber Grand Challenge featured cyber reasoning systems, such as our
Mechanical Phish, that analyze code to find vulnerabilities, generate exploits to prove the existence of
these vulnerabilities, and patch the vulnerable software.

O ur world is becoming increasingly connected,
and the fantastical view of hackers, as portrayed

by Hackers and other ’90s-era movies, is starting to seem
feasible, but with nation-states and criminal enterprises
taking the place of Angelina Jolie and her crew. Because
we have repeatedly demonstrated the lack of sufficient
collective security experience (or sufficient interest in
software security) to avoid widespread vulnerabilities,
research has turned to the automatic discovery and
repair of such flaws in deployed software.

One driver of this research direction is DARPA,
who has a long track record of pushing for the auto-
mation of tasks traditionally (and imperfectly) han-
dled by humans. DARPA bootstraps research areas
through a time-proven method: explicit competitions.
To advance autonomous security analysis, DARPA

organized the Cyber Grand Challenge (CGC), a com-
petition in which human teams built fully autono-
mous cyber reasoning systems (CRSs) that were pitted
against one another in a contest to analyze, exploit, and
patch binary software.

Like DARPA’s earlier self-driving Grand Challenge,
the CGC was a proxy for a realistic scenario. The first
self-driving Grand Challenge was held in the desert,
and the resulting prototypes would suffer driving in a
city as much as the prototype CRSs that came out of
the CGC would suffer in the analysis of truly real-world
software. But these systems represented a start: the
CGC revealed a glimpse of a possible future in which
machines not only build our cars, drive us around, and
manage our homes but also ensure the security and reli-
ability of the software we use every day.

www.computer.org/security 13

We have discussed our CRS, Mechanical Phish, from
a technical perspective in literature1 and in a number of
conference talks. In this article, we not only provide
these technical details but also discuss the human side
and organizational side of the creation of a CRS and the
lessons that the CGC taught us about cyber autonomy.

The Cyber Grand Challenge
Traditionally, groups of humans faced off in capture-the-
flag (CTF) competitions designed to push their hacking
skills to the limit. In these competitions, each group is
responsible for the defense of a networked computer.
Because the computers defended by the teams have
the same configuration and installed services, each
team works on finding vulnerabilities in their instance,
and then use the acquired knowledge to fix the found
vulnerabilities—and, at the same time, break into the
computers run by the other teams. Each successful hack
produces a secret “flag,” which is presented to the orga-
nizers of the competition to prove that the service has
been compromised. Although it started as an event for
pure enthusiasts, CTF competitions quickly evolved
into something resembling more of an e-sport, with
longstanding, well-known teams, corporate sponsor-
ship, significant media coverage, and the occasional
scandal or novel development to shake up the field.

The CGC was one such development. In the CGC,
DARPA created a nearly traditional competition with
one fundamental twist: no humans could take part.
Instead, participants had to create a system that could
reason about cybersecurity in a fully autonomous way.
The idea was that these CRSs would face each other in a
competition in which the human factor was completely
removed, and only automated approaches that were
able to deal with the complete identification-patch-
exploitation pipeline could be used.

Feasibility Concerns
There are many challenges that must be surmounted
when developing a CRS. Some of these—the pri-
oritization of paths during symbolic execution, the
improvement of precision during static analysis, and so
on—require as-yet unknown scientific advancements
to be solved. Others seem to be mostly engineering
challenges, simply requiring a large development effort
by many skilled developers.

One of the biggest engineering challenges facing
CRSs is environment modeling. Certain binary analysis
techniques (including symbolic execution, which was
used by almost every CGC competitor) essentially per-
form an emulation of binary code on an exotic domain
(that is, instead of reasoning about ones and zeroes as
a normal CPU would, they deal with symbolic expres-
sions, value ranges, and so on). These techniques need

to be provided with models for the functionality of the
environment, to represent the side effects of the actions
performed by system calls. Unfortunately, modern
operating systems utilize a wide range of such system
calls (Linux has more than 300, for example), which
makes the creation of these models tedious.

DARPA worked around this problem by creating the
DECREE operating system, a simplified OS that con-
tains just seven system calls:

 ■ terminate: the equivalent of Linux’s exit()
 ■ transmit: the equivalent of Linux’s send()
 ■ receive: the equivalent of Linux’s recv()
 ■ fdwait: the equivalent of Linux’s select()
 ■ allocate: the equivalent of Linux’s mmap()
 ■ deallocate: the equivalent of Linux’s munmap()
 ■ random: the equivalent of Linux’s get_random()

By simplifying the environment model, DARPA greatly
lowered the barrier to entry, removing much tedious
engineering effort from the development of CRSs.
Otherwise, the environment was standard, using the
well-studied and well-supported x86 architecture and a
simple, custom binary file format (supporting only stati-
cally linked binaries).

CGC Qualifying Event
Because the CGC attracted more than 100 prospective
teams, DARPA held a qualifying round, dubbed the
CGC Qualifying Event, or CQE. One of these prospec-
tive teams was Shellphish.

Shellphish is a disorganized collection of hackers at
the University of California at Santa Barbara computer
security lab, and while the CGC was tangentially related
to some of our research at the time, we could not devote
much time to it. Thus, our CGC effort was more or less
on the back burner until we could no longer ignore it—
about two and a half weeks before the qualifying event.

In those two and a half weeks, we built a fledgling
CRS, laying the groundwork for ideas that later turned
into Driller2 and Ramblr.3 We built a vulnerability
detection engine that combined the fuzzing techniques
pioneered by American Fuzzy Lop (AFL)4 with the
symbolic execution capabilities of the angr frame-
work.5 In addition, we developed a patching engine
that supported both “general” patches (when the CRS
couldn’t find a specific vulnerability to patch) and “tar-
geted” patches (when it could).

The CQE differed from the final event in several
ways. First, humans were allowed to monitor, start, and
restart the CRSs but were not allowed to gain and use
any knowledge from the binaries themselves. This made
it less necessary to have a “bulletproof ” system, because
we could respond to system crashes. Second, actual

14 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

exploitation was unnecessary in the CQE—triggering
a crash counted as “exploiting” a binary. This made it
easier on the teams, in that they did not have to write an
auto-exploitation component until after the CQE, but it
also meant that the teams’ patches had to prevent bina-
ries from crashing, rather than simply making crashes
unexploitable. Third, each CRS operated in isolation—
there were no “flags” to capture from opponents, and
scoring was purely on the basis of the crashing of the
reference binaries in the dataset and protection against
the reference exploits.

The CQE comprised a set of roughly 130 previously
unseen binaries that the various CRSs had to analyze
without any human involvement. Our CRS was able to
crash 42 and prevent crashes in 49 of the CQE binaries.
This, combined with the relatively high performance of
the patches (which impacted the score), was enough
to qualify us for the final event, netting us $750,000 in
prize money.

CGC Final Event
The CGC Final Event (CFE) was very different from
the CQE. The CRSs faced one another, needing to craft
actual exploits (not just crashes), generate advanced
patches with little overhead, steal flags, and adapt to
the opponents’ actions. There was more than a year gap
between the CQE and the CFE to give teams enough
time to develop their systems. True to form (and, again,
because of the realities of a research lab), we procrasti-
nated until the last three months.

The CFE was an incredible spectacle, in which the
seven finalist CRSs (housed in seven massive racks
provided by DARPA) competed live on stage, in front
of an audience of thousands of people and with live
commentary by “sportscasters.” The humans of the
teams watched it from the “team area,” a cluster of
couches within sight of the stage, but separated by a
government-certified air gap.

There was absolutely no human intervention. The
CRSs had to start on their own, hack on their own, and
adapt to problems on their own. It was a grueling day,
analogous in some small way to having to wait outside
an operating room, with absolutely no control over
what happens behind closed doors.

In the end, the Mechanical Phish won third place,
netting us another $750,000 in prize money.

Birthing a CRS
What motivated us was the challenge of producing a
fully integrated and robust system based on the cur-
rent state of the art in binary analysis research. The dif-
ficulty of this challenge comes from the deep divide
between “state of the art” and “robust,” not just in tech-
nical terms, but in subtle cultural terms, too. Research

labs, hanging on to the state of the art, are not nor-
mally well-known for the production of robust soft-
ware. Instead, the incentive structure tends to favor the
rapid creation and evaluation of “research prototypes,”
which work just enough to evaluate a given concept
before moving on to the next research goal. Competing
in something as consuming as the CGC is not a typical
activity for a research lab. As such, we faced organiza-
tional and human challenges far beyond what we had
been prepared for. While these challenges are not the
type of technical details generally found in a scientific
magazine, they are an important reality on our road to
cyber autonomy.

We had to tackle designing an incredibly robust
infrastructure, on hardware that we would not be able to
access for issue remediation, at “move-fast-and-break-
things” speed. We had to build a system that worked,
without human intervention, for 10 hours.

From Research Prototype to Reliable Software
As academics, we are always chasing beyond the cur-
rent cutting edge, to explore the next frontier. Because
of this, the mode of operation in academic research
is often to rapidly achieve the minimally functional
prototype of an idea (without concern for beauti-
ful design or reliability), evaluate it on a meaningful
dataset, and publish the result. Normally, labs do not
have (and do not need) the software development
practices, ubiquitous in the industry, that encour-
age the development of good code. In fact, the term
“research-quality code” has come to refer to code that
showcases an idea but is almost unusable outside a
research experiment. GitHub is rife with this kind of
academically produced code, leading to much suffer-
ing among industry developers and enthusiasts who
try to adopt it.

However, plenty of labs go against the grain, and our
long history of creating services and software that work
(such as Wepawet,6 Anubis,7 and angr5) is an attempt
to provide to the public at large usable research proto-
types. In the context of the CGC, the problem was that
we did not have sufficiently good software develop-
ment practices. This had to change on the fly—over the
course of the CGC, we adopted practices such as con-
tinuous integration, issue tracking, and even an attempt
at code freezes.

While this process was difficult, it had a humongous
eventual payoff for our research. The direct benefit from
the CGC was an extreme improvement in the reliabil-
ity and performance of our binary analysis framework,
angr. Since then, these improvements have been put
to work powering a plethora of other research projects,
both from our lab and from labs and companies around
the world.

www.computer.org/security 15

Human Organization
Through a process reminiscent of natural selection, our
team settled into several main roles. We had a strategic
leader, who oversaw the long-term direction and did the
“people managing” (that is, the professor); the tactical
captain, who managed the daily technical direction; and
four technical teams to handle the infrastructure, the
base binary analysis framework (angr), exploitation,
and patching. These teams were logical, rather than
physical entities—many of our teammates worked on
more than one team throughout the CGC. For example,
overlap between the base analysis framework team and
the patching or exploitation team was fairly common.

Our team had a dozen people, none of whom had
ever built a CRS before, and as mentioned earlier, we
compressed the creation of the CRS into just over three
months. Thus, the Mechanical Phish consumed just
about three person-years of development. This is an
area where the companies that were participating in the
CGC had an advantage—from our understanding, the
corporate teams had fewer members but were able to
dedicate the entire two years of the challenge to their
CRS development. In the end, as always, time was the
most precious resource.

Making Use of Non-Temporal Resources
Other than time, for which we could have designed a
better usage distribution, we also had to properly utilize
a number of other resources. For example, DARPA pro-
vided a cluster of 64 extremely powerful machines for
the development, testing, and eventual deployment of
our CRS. Upon receipt of this hardware, we had a very
vague idea of how the final version of Mechanical Phish
would work. Thus, we designed an extremely flexible
infrastructure, in which resources were automatically
allocated as needed, using modern cluster management
software (specifically, Kubernetes8).

This introduced a number of challenges. First,
Kubernetes was (and remains) under extremely active
development, so the base of our CRS was a moving tar-
get and needed periodic rewrites. Second, some of the
CGC tooling that DARPA released (to work with bina-
ries for the DECREE platform) required kernel modifi-
cations and ran only in a 32-bit VM (rather than a 64-bit
container), necessitating the development of quite a
bit of magic (actually consuming several hacker-weeks
of development) to run virtual machines from within
Kubernetes pods.

Complications
Naturally, complications arose throughout the process.
Some of these were caused by our own disorganization
or our attempts to surf the bleeding edge of security.
Others were uncertainty issues that likely arise with

any new competition format. Of course, the autonomy
requirement of the final event, and the resulting inabil-
ity to fix even minor issues arising from potential unex-
pected events, greatly amplified the stress caused by
these complications.

Closed infrastructure. The most important part of build-
ing a system that can function autonomously is test-
ing. As the various CRSs would talk to a central service
(dubbed the Team Infrastructure; TI) during the game,
the availability of this TI was necessary to test our sys-
tems. However, to avoid specific attacks developed
against the TI, DARPA did not provide it to us in a run-
nable form. Instead, it provided a separate, partial imple-
mentation, called the Virtual Competition. The Virtual
Competition implemented the minimal set of capabili-
ties to start a game but did not have any functionality to
evaluate exploits, test patches, generate sample network
traffic, or compute scores.

Teams had to implement their own extensions to the
Virtual Competition to have a readily available testbed,
and DARPA did provide a network specification to help
with this. As a result, there was no guarantee that these
extensions were correct, or that they functioned in the
same way as the actual TI.

Sparring partner uncertainty. The Virtual Competi-
tion was not enough to thoroughly test our systems.
DARPA’s solution to this was a set of “sparring partner”
sessions, during which the actual TI would become
accessible.

There was only one such interface, and eight enti-
ties clamoring to use it—the seven competitors and
the infrastructure team. To prevent data leaks between
these entities, the sparring partner could only be acces-
sible to one of them at a time and had to be wiped
between sessions. The result was that the sparring part-
ner would, at an unannounced time, become accessible
for an average of 30 minutes before shutting down.
Unless the CRS was up, working, and properly scanning
for the TI, the sparring session would be missed (this
happened depressingly frequently).

Sometimes, this would cause interesting situations.
One sparring partner round started in the middle of
a database migration, with the central database of our
CRS o*ine. To avoid wasting the sparring session, we
launched off components of the CRS by hand, coordi-
nating between them with a paper database, shown in
Figure 1.

Thirty minutes was enough for five game rounds—
sufficient to test basic CRS functionality but not CRS
reliability. This meant that reliability issues, requiring a
functional TI to trigger over a large amount of rounds,
were very hard to identify. Worse, these five rounds had

16 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

to be used to attempt to understand details of the per-
formance scoring.

Performance scoring uncertainty. The CGC penalized
teams for excessive performance overhead in their
patched binaries. This performance score was critical—
in fact, one of the teams that crashed the most binaries
in the CQE failed to qualify precisely because their
patches underperformed.

Naturally, determining the performance penalty was
critical to the overall effectiveness of a CRS. However,
two factors complicated this. First, DARPA did not
specify exactly how performance overhead is calculated,
and reproducing these calculations was very difficult.
Furthermore, validating that the reproduced calcula-
tions were correct was impossible, as the relatively rare
sparring partner sessions were the only way to get per-
formance ground truth.

Second, DARPA kept the full penalty calculation
formula (that took the time, memory, and file-size over-
head and transformed it into a scaling factor applied to a
team’s points) secret. Without this formula, it was hard
to reason about allowable performance tolerances for
patching.

DARPA adopted this secrecy to stop teams from
“gaming the system” ahead of time. This makes sense
if there is a chance for human adaptability once the
event begins. Without this chance, the secrecy made it
extremely difficult for CRSs to make intelligent deci-
sions about their patches.

Binary format uncertainty. One example of a small
issue that caused great trepidation is the DECREE
binary format itself. Into each CGC binary, the
DECREE compiler tool-chain would insert a PDF file
(which was always the same), along with a section of
code that would checksum this PDF (by reading each
byte of it when the program starts). This led to the
obvious question: Will the PDF be in the binaries pre-
sented during the final event, as we remove the PDF
to boost performance? Empirically, the answer to this

question was “Yes,” and the PDF seems to have been
included to test whether the tools used were capable
enough to properly remove it (and some binaries
stressed the tools further by actually using data from
the PDF outside of the checksum code) and reward
such tools with lower performance overhead. How-
ever, DARPA stayed silent on the matter, requiring our
tools to be adaptive to the no-PDF case, which did not
manifest in the end.

Mechanical Phish
We have extensively described the various compo-
nents of Mechanical Phish in research papers2,3,5
and in an in-depth Phrack article.1 For completion,
we include a quick summary of the system high-level
design. In Figure 2, one can see the overall layout of
our architecture. The entire Mechanical Phish code
base was composed by approximately 100,000 LoC
(excluding external components), mostly written in
Python. Out of these LoC, about 70,000 composed
angr, the binary analysis framework on top of which
most of the other components were built.

Infrastructure
DARPA provided every team 64 dedicated servers with
overall:

 ■ 1,280 physical cores,
 ■ 16 TB of memory, and
 ■ 64 TB of disk space.

To take full advantage of the hardware, we split our sys-
tem into small, independent components and ran every
component in a completely isolated environment. We
used Docker containers to ensure components’ isola-
tion, ease of deployment, and scalability and Kuber-
netes to orchestrate the containers.

Every interaction with the game (for example,
the retrieval of the current score or the submission of
exploits) was performed through an API provided by
DARPA, the TI. Ambassador and Network Dude were
the components in charge of interacting with the game
API and storing collected data into our central database,
Farnsworth.

Meister and Scriba were the brain of our CRS. The
first took care of reading the game status from Farn-
sworth and scheduling tasks. The second was respon-
sible for deciding what patches and what exploits to
submit, based on our internal evaluation and the feed-
back provided by the game API.

The hard program analysis work was done by the
Workers, a set of components performing different
tasks like bug finding, patching, exploitation, and results
evaluation.

Figure 1. The paper database, used when a sparring partner

session started in the middle of a database migration.

www.computer.org/security 17

Bug Finding
Mechanical Phish’s exploitation involves two major
steps. The first finds crashes in the target programs. The
second step takes those crashes and attempts to figure
out how they can be modified to produce exploits that
take control of the program.

We used AFL, a well-known and highly successful
evolutionary fuzzer, as the core of the bug-finding com-
ponent of our CRS. For the CGC, we needed to handle
a large variety of programs without any prior knowledge
of what sort of inputs they will expect. An evolutionary
fuzzer, such as AFL, is perfect for this, because it detects
when inputs trigger new functionality inside the pro-
gram, and then further mutates those inputs. This capa-
bility allows it to construct valid inputs, even when the
program being fuzzed has strict requirements on the
input format.

Although AFL is quite successful at finding bugs on
its own, we found that it struggled to satisfy specific and
difficult checks in the sample programs. Those checks
could be as simple as matching a magic number or as
difficult as solving an equation printed to the user. To
handle these, we developed Driller, a tool that combines
fuzzing with symbolic execution.2 Symbolic execution
is a slow but powerful technique for determining the
equations that describe the state of the program at any
point in execution. To use it efficiently, Driller limits
the search space of the symbolic execution to that of
the inputs generated by AFL. Specifically, the symbolic
execution component will follow each input in AFL’s
corpus and check if there are any new locations in the
program that it can reach.

AFL and symbolic execution, combined, made
Driller highly successful in finding bugs that could be
used to exploit the target programs.

Exploitation
The strategy we chose to exploit bugs found by the Driller
component was to first analyze the crash using symbolic
execution. That is, we symbolically traced the program fol-
lowing the crashing input, and when we got to the crash,
we modified the input as needed to make an exploit.

In general, it can be extremely complicated to fig-
ure out how to exploit a particular bug or crash. For
Mechanical Phish, instead of trying to design a general
strategy, we came up with a list of crash types that we
could exploit and methods to exploit just those partic-
ular crashes. The crashes we targeted were instruction
pointer overwrite, arbitrary read address, arbitrary write
address, and vtable overwrite. That list of crashes was
picked specifically to target a fairly large range of what
we expected to see in the CGC. Many types of bugs
could map to the same crash type. For example, IP over-
write could occur from a buffer overflow, a use after free,
an out-of-bounds index, and so forth. In addition, for
each type of crash, there were multiple techniques that
would try to exploit it in different ways.

After tracing the crash, Mechanical Phish would
apply each technique and check if it succeeded in mak-
ing a working exploit. Eventually, when one was found,
Mechanical Phish would begin using it against the
opponents.

Here we show a function with a basic stack overflow.
void say_hello() {

 char name[20];

 read_string(name);

 printf(“hello %s\n”, name);

 return;

}

In a normal interaction, the name provided will
be short enough to fit entirely in the name buffer and

Figure 2. The architecture of Mechanical Phish.

ScribaMeister

Ambassador
Network

dude

Worker

Poll creator

Tester

Patcherex
Farnsworth

TI API IDS tap

Colorguard

Rex

AFL Driller

POV fuzzer

POV tester

18 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

the program will execute as expected. For that case,
the stack of the function will look like the example in
Figure 3a. However, the fuzzing component in Mechan-
ical Phish can easily generate an input that is too long
and overflows the return address, causing the program
to crash (Figure 3b). Next, Mechanical Phish will sym-
bolically trace the crashing input as shown in Figure
3c. It will understand that at the crash the instruction
pointer is equal to SYM[20:24], where SYM is used to
denote symbolic input.

To exploit this, Mechanical Phish would try to jump
to the bytes we control and execute them as code, referred
to as shellcode. It added constraints to the equations that
were collected during symbolic tracing. First, it placed
the shellcode in memory by adding the constraint
SYM[0:20] !! shellcode. Then it constrained the
overflowed return address to be the address of the shell-
code, SYM[20:24] !! addr(shellcode). Finally,
it asked the constraint solver to generate an input that
matches these equations; this input was our exploit.

Patching
Patcherex, which is built on top of angr, is the central
patching system of Mechanical Phish.

Patcherex follows an untargeted approach. In other
words, it modifies binaries by applying generic binary
hardening techniques, without using directly any
knowledge about how a binary is exploitable. Neverthe-
less, in many cases, these hardening techniques are able
to make vulnerabilities initially present not exploitable.

Furthermore, even when these vulnerabilities are
still exploitable, the way in which exploits have to be car-
ried out changes significantly in many patched binaries.
For this reason, in many cases opponents were forced
to analyze our patched binary to be able to adapt their
exploits. However, we also implemented binary modi-
fications hindering static and dynamic analysis of our
patched binaries, making automatic analysis extremely
hard, if not impossible. These included both passive

countermeasures (that is, the produced binary files
were slightly corrupted, being able to be executed in
the DECREE environment but not analyzed with gdb
or IDA) and active countermeasures. For example, we
identified a buggy instruction in the floating-point sup-
port of the QEMU emulator that, when specific condi-
tions were met, would cause the process to freeze. The
inclusion of this instruction in our patches would hang
any systems based on QEMU (in fact, the visualization
system used by the organizers in the final event actually
froze due to this countermeasure when visualizing an
attempted exploit against one of our patched binaries).

Given the scoring system of the CGC competi-
tion, the primary concern while developing Patcherex
was not to degrade the functionality of the original
binaries and their performance. In fact, while it is rea-
sonably easy, in general, to harden a binary to make it
not exploitable, it is extremely hard to achieve this goal
without significantly affecting its performance. Further-
more, compiled code often presents corner cases (due
to, for instance, compiler optimizations) that, if not
handled correctly during patching, will lead to the gen-
eration of nonfunctioning code.

Patcherex applies to any analyzed binary a list of
techniques that corresponds to high-level patching
strategies. Applying a specific technique to a binary gen-
erates a set of patches, which are low-level descriptions
of how a fix or an improvement should be made on the
target binary, such as adding some code or data to the
original binary.

We implemented three different types of techniques:

 ■ Binary hardening: Generic binary hardening tech-
niques. For instance, we implemented encryption of
the return pointer and a “loose” form of control flow
integrity. We also implemented a technique to pre-
vent memory-leaking exploits. In particular, we added
code to the patched binary to check the transmitted
data.

 ■ Anti-analysis: Techniques aiming to prevent rivals
from analyzing or stealing our patched binaries.
For instance, we specifically added code triggering
QEMU emulation bugs. In addition, we also inserted
a back door in our patched binaries so that, in case
they were reused by any opponent team, we could
have trivially exploited them.

 ■ Binary optimization: We realized that many of the
provided binaries were easily optimizable (mainly
because they were originally compiled without using
compiler optimizations). Therefore, we applied
binary optimization techniques (such as constant
propagation or dead assignment elimination) to lower
their memory/CPU usage. Improving the perfor-
mance of the original binaries allowed us to lower the

Figure 3. The function say_hello() from the listing in the

main text has a buffer overflow. This figure shows the stack

of the buffer during the following: (a) normal interaction,

(b) overflowing input, and (c) the symbolically traced

input.

0x41414141AAAAAAAAAAAAAAAAAAAA

Antonio 0x8048103

SYM[0:20] SYM[20:24]

Name Bu!er Ret Addr

a)

b)

c)

www.computer.org/security 19

negative impact (in terms of performance and, as a
consequence, score) that the addition of patches gen-
erated by the previously mentioned techniques inevi-
tably introduced.

Patches generated by applying the different techniques
to a binary were then integrated into the original binary
by a patching backend. Specifically, we developed a
“reassembler” backend, able to convert a binary from
its compiled form to an assembly form (recovering,
for instance, function boundaries, function pointers,
and pointers to data structures in memory). This form
allows us to easily add or modify existing code and data
and then use existing assem-
blers to generate a
patched binary. Full
details about the reas-
sembler backend have
been published in an
academic paper.3 As
a fallback solution,
in case the reassem-
bler backed fails to generate
a working patched binary, we use a different backend.
This alternative approach is based on the inline inser-
tion of detours (that is, jmp instructions), and it gener-
ates patched binaries that are less likely to misbehave,
but slower and more memory greedy.

Lessons Learned
Participating in the CGC taught us a number of lessons,
both technical and nontechnical, which shaped our
research and the pursuit of similar endeavors.

Teamwork
Effective teamwork is essential. A graduate student
lab might not have the discipline of the well-managed
development group of a company, but it has a unique
drive and a camaraderie that cannot be easily replicated.
Even though we suffered some setbacks due to the lack
of experience in the development of high-quality soft-
ware, the team was able to step up to the task without
concerns about personal-life side effects. This is what
a competition, like the CGC and many human-based
CTFs, fosters: the drive to win against other teams is
a stronger motivating force than a research deadline or
the need to achieve some abstract result. On the other
hand, these engagements cannot be the norm, as the toll
(in terms of stress and pure physical exhaustion) that
these kinds of events bring is not sustainable.

Gaming the Game
Understanding the nature and rules of the game
is essential. Interestingly, the top-scoring system,

Mayhem, had a dramatic failure in the middle of
the competition, which prevented the system from
finding new exploits against other teams. However,
by not doing anything and simply passively defend-
ing, the Mayhem system was able to maintain its
advantage against the other CRSs, winning the
competition.

On our side, we were undecided between two dif-
ferent approaches to pushing patches. This was an
important part of the game, as pushing a new version
of a binary came with a one-round penalty in terms of
defense points. As a result, pushing binaries too often
could result in a substantial loss of points.

Our two possible
approaches were the
following:

■ A l w a y s - p a t c h
strategy: Push patched
binaries as soon as
we were sure that
their performance

was acceptable.
■ Patch-if-exploited strategy: Push patched binaries as

soon as we were sure that they were performant enough
and we had developed an exploit for the vulnerability.

The second approach was motivated by the fact that
we assumed that most teams would have the same
(or at least a very close) capability for exploitation.
Under this assumption, the fact that we found an
exploit for a specific target binary would imply that it
was highly likely that other teams would have found
an exploit as well, and therefore, it was reasonable to
push a patched binary and take the associated defense
penalty.

A few hours from the beginning of the competition,
somewhat emboldened by the fact that our patching
seemed to be highly effective with minimum perfor-
mance overhead, we decided to push patched binaries
as soon as we were able to produce them (that is, we
chose to use the always-patch strategy). This decision
resulted in a penalty that cost us the victory, as our post-
game analysis revealed.

In this regard, it is very important to point out that
every team could look back and consider things that
they might have done differently. Understanding what
the best strategy “would have been” is easy after the
game is over. On the contrary, before the game, many
aspects were unknown (for instance, how many chal-
lenges will be exploited), and therefore, choosing an
optimal strategy was significantly harder.

Our postgame analysis was performed by comput-
ing scores for several simulated CGC rounds where the

The drive to win against other teams is a
stronger motivating force than a

research deadline or the need to achieve
some abstract result.

20 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

Mechanical Phish undertook different strategies. The
results are as follows:

 ■ Patch-if-exploited strategy: We calculated our score
with a patch strategy that would delay patches until
after we launched exploits on the correspond-
ing binary. In this case, our score would have been
271,506, putting us in first place.

 ■ Never-patch strategy: We assumed that any time an
exploit would be launched on a binary against any
team, the exploit would be run against us during that
round and all subsequent rounds. With this calcula-
tion, our score would have been 267,065, putting us
in second place.

 ■ No-op strategy: We ran an analysis similar to the
never-patch strategy, but we also removed any
exploitation-provided points. In this case, we would
have scored 255,678 points, barely beating Shellphish
and placing third in the CGC.

Exploitation
We were surprised that our exploitation system turned
out to be the most effective of any competitor’s during
the final event, in terms of both the unique number of
exploits produced and the number of times an exploit
successfully worked. We exploited 15 different chal-
lenges, while the next best competitor exploited 11.
However, there were 82 total programs, so what kept us
from exploiting more? First, there were a good number of
errors in our implementation. But, other than those, we
believe that automatically exploiting bugs requires more
than the “bag of techniques” approach we developed.

In exploitation, it is common that a human will care-
fully set up the program state, such that when the bug is
triggered, structures and memory are already correctly
set up. Our approaches did not have any way to back-
track and trigger the other functionality before that bug
that would aid in setting up the state correctly. For some
cases, this implies that we had to hope that the fuzz-
ing component generated a crash where the state was
already set up correctly, and this was not always the case.

Binary Patching
Many techniques exist for binary patching, including
in-place bytes replacement, detouring, and so on, as
well as systematic patching solutions like static binary
rewriting techniques and dynamic binary instrumenta-
tion.9–11 However, the CGC setting imposed some vital
restrictions: The customized OS (DECREE), which has
a very restricted set of system calls and a significant lack
of system mechanisms (like process forking and debug-
ging), made any dynamic approach unusable. Moreover,
the tight overhead allowances for both performance
and file size prevented us from applying many static

binary rewriting techniques, which either unacceptably
degrade the overall performance of patched binaries or
add a noticeable amount of extra bytes to provide safety
guarantees for rewriting. Hence, we picked reassembling
(or reassembleable disassembling12) as the major binary
rewriting technique and implemented Ramblr, with
detouring as a fallback.

Some facts about the binaries in the CQE make
reassembling a natural choice: All binaries are
self-contained—no library is needed at all. Nearly all the
binaries are compiled without any optimization flags
switched on. Most of the binaries are relatively small
compared to real-world targets, like word processors or
browsers. Last but not least, only a few binaries are obfus-
cated, and it is not difficult to identify this problem and
bail out. These facts made our CFG recovery and code
data differentiation—which are the foundation of many
static analyses, including reassembling—much easier.

After the CFE, we successfully applied Ramblr
on more targets—including many CTF binaries—
for binary rewriting and patching. Nevertheless, it is
worth noting that all target binaries we rewrote using
Ramblr were not considered “huge.” We believe that
using Ramblr on large or complex binaries will not
yield a satisfactory result, as code data differentia-
tion becomes harder when the code base gets larger,
and our reassembling approach is best-effort and
empirical—it does not provide safety guarantees (that
is, it does not guarantee that no immediate value is
treated as a pointer during reassembling). As we see
it, providing safety guarantees is very difficult, if not
entirely impossible. Therefore, Ramblr, in its current
form, does not seem to be an ideal choice for rewriting
large, real-world targets.

Infrastructure
Our bug-finding techniques pushed the limits of the
bleeding-edge DARPA-provided servers. During our
tests, processes died because the system ran out of
memory regularly, and entire servers became unrespon-
sive because of CPU-intensive workloads.

Normally, human intervention can mitigate these
problems quite easily. However, during the CGC Final
Event, our CRS had to run completely autonomously,
which is why we invested a substantial amount of time
in creating a highly available and fault-tolerant system.

Containers, which we orchestrated through Kuber-
netes, were the core foundation of the Mechanical
Phish. To facilitate proper recovery without losing too
much data, we designed our components to be stateless,
and we broke down the complex functionality of our
CRS into smaller components that executed separately,
and whose results could be check-pointed and stored.
Thanks to this design and by leveraging the tools that

www.computer.org/security 21

Kubernetes provides, server failures were not critical. In
fact, in our tests, Mechanical Phish kept exploiting and
patching even if up to two-thirds of the cluster failed.

Unfortunately, stateless services are only one side
of the coin, and the most important components are
not stateless, namely the Kubernetes API server itself
and our database. For these only two stateful compo-
nents, we deployed multiple redundant instances with
fail-over running on different nodes.

Interestingly, when we started to design the architec-
ture of our CRS (in December 2015), Kubernetes was
still in an early stage (version 1.0, July 2015). Since then,
and most notably during our development process,
Kubernetes has seen significant development and many
improvements have been made. Although a blessing,
this was a curse at the same time: constant API changes
and updates broke compatibility, and our code base had
to be dealt with on a regular basis.

Regardless of our problems during the development
for Mechanical Phish, Kubernetes was easy to use and
powerful. In fact, after our
positive experience,
we converted our
research lab from a
system where users
have bare-metal serv-
ers allocated to them,
to a container-based
system where users
request CPU and memory
on an ephemeral basis, improving our overall resources
utilization significantly and allowing research experi-
ments of significantly larger scale than ever before.

Aftermath: DEF CON CTF
When the DARPA CGC was announced, LegitBS,13

who were the organizers of the 2016 DEF CON CTF,
decided to structure the competition in a way that was
identical to the CGC, so that the CRS that would win
the CGC could compete against human teams. As a
result, the Mayhem CRS was one of the teams playing
in the 2016 DEF CON CTF.

However, Shellphish was the only team that quali-
fied for both the CGC and the DEF CON CTF, and
therefore, we had a unique opportunity: we could have
Mechanical Phish play alongside humans.

Mechanical Phish was able to observe how humans
(that is, the Shellphish team members) interacted with
a target application when they were trying to find vul-
nerabilities. Then, the system used these interactions
as seeds for its own vulnerability analysis process, with
surprising results. On many occasions, the system
was able to leverage the human inputs to reach “deep”
into the application and identify vulnerabilities that

could not have been identified without human assis-
tance. Interestingly, the CRS did more than simply play
backup to its human partners. Rather, it used human
input to enhance its own ability and beat the humans to
the punch: more than half the vulnerabilities found by
the combined team were created by Mechanical Phish
after leveraging human input to guide its analysis.

T he successful interaction between the auto-
mated reasoning system and the human analysts

prompted a key observation. Throughout the history
of the field of vulnerability analysis, the principal para-
digm has been the use of tool-assisted human analysis, in
which human analysts would carry out the core analy-
sis tasks, while utilizing automated techniques as an
aid. In this case, the humans are the orchestrators of
the analysis process, and they delegate specific tasks to
specific tools, taking care of combining and composing
the results of multiple tools. The CGC pushed a second

approach: complete auto-
mation, where fully
automated strategy
routines utilized fully
automated analyses to
identify, exploit, and
patch flaws in soft-
ware. This inspired
a third, heretofore

unexplored model, which
is human-assisted automated analysis of software. In this
model, in an inverse of current techniques where most
approaches see automated tools as an aid or extension to
human analysts, human analysts can instead be used as
an aid to automated vulnerability analysis systems.

Following this approach, the autonomous system
determines which analysis actions need to be carried
out by its components. Then, the system creates task-
lets, some of which can be delegated to humans with dif-
ferent skill levels (for instance, experts or nonexperts).
Even though this approach is still in its infancy, our
preliminary results show that by orchestrating humans
in a large-scale complex vulnerability analysis process,
it is possible to identify vulnerabilities that would not
be identified by purely automated means, shining a new
light on one of the most challenging problems in pro-
gram analysis.14

References
1. “Cyber Grand Shellphish,” Shellphish, Jan. 2017; http:

//shellphish.net/cgc.

 2. N. Stephens et al., “Driller: Augmenting Fuzzing through

Selective Symbolic Execution,” Proceedings of the Network

and Distributed System Security Symposium (NDSS 16), 2016.

The autonomous system determines which
analysis actions need to be carried out by
its components. Then, the system creates
tasklets, some of which can be delegated

to humans.

22 IEEE Security & Privacy March/April 2018

HACKING WITHOUT HUMANS

 3. R. Wang et al., “Ramblr: Making Reassembly Great

Again,” Proceedings of the Network and Distributed System

Security Symposium (NDSS 17), 2017.

 4. M. Zalewski, “American Fuzzy Lop,” 2017; http://lcamtuf

.coredump.cx/afl.

 5. Y. Shoshitaishvili et al., “(State of) The Art of War: Offen-

sive Techniques in Binary Analysis,” Proceedings of the

IEEE Symposium on Security and Privacy, 2016.

 6. M. Cova, C. Kruegel, and G. Vigna, “Detection and

Analysis of Drive-by-Download Attacks and Malicious

JavaScript Code,” Proceedings of the 19th International

Conference on World Wide Web (WWW 10), 2010.

 7. U. Bayer, C. Kruegel, and E. Kirda, !Analyze: A Tool for

Analyzing Malware, EICAR, 2006; https://www.cs.ucsb

.edu/~chris/research/doc/eicar06_ttanalyze.pdf.

 8. “Kubernetes,” Google, 2014; https://kubernetes.io.

 9. C.-K. Luk et al., “Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation,” Proceed-

ings of the 2005 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI 05),

2005, vol. 40, p. 190.

 10. N. Nethercote and J. Seward, “Valgrind: A Framework for

Heavyweight Dynamic Binary Instrumentation,” Proceed-

ings of the 2007 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI 07),

2007, p. 89.

 11. M. Smithson et al., “Static Binary Rewriting without

Supplemental Information: Overcoming the Tradeoff

between Coverage and Correctness,” Proceedings 20th

Working Conference on Reverse Engineering (WCRE 13),

2013, pp. 52–61.

 12. S. Wang, P. Wang, and D. Wu, “Reassembleable Disassem-

bling,” 24th Usenix Security Symposium (USENIX Secu-

rity 15), 2015, pp. 627–642.

 13. L.B. Syndicate, “Legitimate Business Syndicate CGC

Documentation,” 2015; https://cgc-docs.legitbs.net.

 14. Y. Shoshitaishvili et al., “Rise of the HaCRS: Augment-

ing Autonomous Cyber Reasoning Systems with Human

Assistance,” Proceedings of the ACM Conference on Com-

puter and Communication Security (CCS 17), 2017.

Yan Shoshitaishvili is an assistant professor at Arizona
State University, where he leads research into auto-
mated program analysis and vulnerability identifi-
cation techniques. Contact at zardus@shellphish.
net.

Antonio Bianchi is a PhD candidate at the University of
California at Santa Barbara. Contact at antoniob@
cs.ucsb.edu.

Kevin Borgolte is a PhD candidate in the Computer Sci-
ence department at the University of California at
Santa Barbara. Contact at cao@shellphish.net.

Amat Cama is a world-renowned hacker, having partici-
pated in countless CTFs around the globe. Contact at
amatcama@gmail.com.

Jacopo Corbetta is a senior engineer at Qualcomm
Product Security. At the time of this writing, he
was an independent researcher. Contact at jacopo
.corbetta@gmail.com.

Francesco Disperati is a senior software engineer at
PayJunction. Contact at me@nebirhos.com

Audrey Dutcher is an undergraduate computer science
researcher at the University of California at Santa
Barbara. Contact at dutcher@cs.ucsb.edu.

John Grosen is a computer science major at the Mas-
sachusetts Institute of Technology. Contact at jmg@
johngrosen.com.

Paul Grosen is a high school student, researcher in the
Security group in the Department of Computer Sci-
ence at the University of California at Santa Barbara,
and a Shellphish member. Contact at pcgrosen@
cs.ucsb.edu.

Aravind Machiry is a PhD candidate at the University
of California at Santa Barbara. Contact at machiry@
cs.ucsb.edu.

Chris Salls is a PhD student at the University of Califor-
nia at Santa Barbara, where he works on automated
techniques to find memory corruption bugs. Contact
at salls@cs.ucsb.edu.

Nick Stephens is a security researcher and a member
of the Shellphish team. Contact at nick.d.stephens@
gmail.com.

Ruoyu “Fish” Wang is a PhD candidate at University of
California at Santa Barbara. Contact at fish@shellphish
.net.

Giovanni Vigna is a professor in the Department of Com-
puter Science at the University of California at Santa
Barbara, the CTO at Lastline, Inc., and the founder of
Shellphish. Contact at zanardi@shellphish.net.

Read your subscriptions through

the myCS publications portal at

http://mycs.computer.org

